Nonequilibrium Dissipation in Living Oocytes

Wyliie. Ahmed1,2, Etienne Fodor3, Maria Almonacid4, Matthias Bussonnier2, Marie-Helene Verlhac4, Nir Gov6, Paolo Visco3, Frederic van Wijland3,5, and Timo Betz2,7

1. Department of Physics, California State University - Fullerton, CA 92831, USA; 2. Sorbonne Universités, UPMC Univ Paris 06 - 75005, Paris, France; 3. Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/IP, Université Paris Diderot 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France; 4. CIRB, Collège de France, CNRS-UMR7241, INSERM-U1050 - 75231 Paris, Cedex 05, France; 5. Department of Chemistry, University of California - Berkeley, CA, 94720, USA; 6. Department of Chemical Physics, Weizmann Institute of Science - 76100 Rehovot, Israel; 7. Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany

Motivation
- An active actin-myosin-V network is necessary for nucleus positioning in living oocytes [1]
- Myosin-V drives vesicles out-of-equilibrium and facilitates active motion in the cytoplasm [1]
- Precise measurement is necessary to quantify the nonequilibrium forces in the cytoplasm

Methodology
- Active-microrheology (AMR) is used to directly measure mechanical properties surrounding endogenous vesicles
- Laser interferometry is used to measure spontaneous motion of vesicles as done in passive-microrheology (PMR)
- Combined measurements allow quantification of out-of-equilibrium behavior such as effective energy and force spectrum [2,3]

Theoretical Model
- We use a Langevin-based approach to model the nonequilibrium motion of vesicles in the cytoplasm [5]
- This allows the calculation of the spectrum of stochastic forces and energy dissipation [4-6]

\[G^*(\omega) = G_0(1 + (i\omega\tau_a)^n) \]

Quantifying Nonequilibrium Activity
- Violation of FDT and the stochastic force spectrum are used to quantify activity [4]

Force Kinetics and Dissipation
- Our model provides a connection between experimentally measured averages and the underlying kinetic processes [4,5]
- Force kinetics are extracted from force spectrum [4]
- Estimates of energy dissipation rate suggest an average of 20 myosin-V motors are driving the observed dynamics [5]

Conclusion
- AMR/PMR is used to quantify nonequilibrium activity
- Minimal model provides connection between measured averages and underlying force kinetics and energy dissipation
- This experimental and theoretical framework can be applied to other active soft matter systems to quantify behavior
- Energy dissipation rate may serve as a fundamental quantity to characterize living and active systems

References and Acknowledgments
This work was funded by the PGG Fondation, Marie Curie Actions, ISF (grant no. 580/12), LNCC (grant no. EL/2012/LNCC/MHV), ANR (grant no. 11-JSV5-0002), CiM (grant no. EXC1003).